Neuronal connexin-36 can functionally replace connexin-45 in mouse retina but not in the developing heart.

نویسندگان

  • Marina Frank
  • Britta Eiberger
  • Ulrike Janssen-Bienhold
  • Luis Pérez de Sevilla Müller
  • Antje Tjarks
  • Jung-Sun Kim
  • Stefan Maschke
  • Radoslaw Dobrowolski
  • Philipp Sasse
  • Reto Weiler
  • Bernd K Fleischmann
  • Klaus Willecke
چکیده

The gap junction protein connexin-45 (Cx45) is expressed in the conduction system of the heart and in certain neurons of the retina and brain. General and cardiomyocyte-directed deficiencies of Cx45 in mice lead to lethality on embryonic day 10.5 as a result of cardiovascular defects. Neuron-directed deletion of Cx45 leads to defects in transmission of visual signals. Connexin-36 (Cx36) is co-expressed with Cx45 in certain types of retinal interneurons. To determine whether these two connexins have similar functions and whether Cx36 can compensate for Cx45, we generated knock-in mice in which DNA encoding Cx45 was replaced with that encoding Cx36. Neuron-directed replacement of Cx45 with Cx36 resulted in viable animals. Electroretinographic and neurotransmitter coupling analyses demonstrated functional compensation in the retina. By contrast, general and cardiomyocyte-directed gene replacement led to lethality on embryonic day 11.5. Mutant embryos displayed defects in cardiac morphogenesis and conduction. Thus, functional compensation of Cx45 by Cx36 did not occur during embryonic heart development. These data suggest that Cx45 and Cx36 have similar functions in the retina, whereas Cx45 fulfills special functions in the developing heart that cannot be compensated by Cx36.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Immunogold evidence that neuronal gap junctions in adult rat brain and spinal cord contain connexin-36 but not connexin-32 or connexin-43.

Physiological and ultrastructural evidence indicates that gap junctions link many classes of neurons in mammalian central nervous system (CNS), allowing direct electrical and metabolic communication. Among at least six gap junction-forming connexin proteins in adult rat brain, connexin- (Cx) 32, Cx36, and Cx43 have been reported to occur in neurons. However, no connexin has been documented at u...

متن کامل

Coxsackievirus and adenovirus receptor (CAR) mediates atrioventricular-node function and connexin 45 localization in the murine heart.

The coxsackievirus and adenovirus receptor (CAR) is a transmembrane protein that belongs to the family of adhesion molecules. In the postnatal heart, it is localized predominantly at the intercalated disc, where its function is not known. Here, we demonstrate that a first degree or complete block of atrioventricular (AV) conduction developed in the absence of CAR in the adult mouse heart and th...

متن کامل

Expression and function of the neuronal gap junction protein connexin 36 in developing mammalian retina.

With the advent of transgenic mice, much has been learned about the expression and function of gap junctions. Previously, we reported that retinal ganglion cells in mice lacking the neuronal gap junction protein connexin 36 (Cx36) have nearly normal firing patterns at postnatal day 4 (P4) but many more asynchronous action potentials than wild-type mice at P10 (Torborg et al. [2005] Nat. Neurosc...

متن کامل

Functional expression of the new gap junction gene connexin47 transcribed in mouse brain and spinal cord neurons.

A new mouse gap junction gene that codes for a protein of 46,551 Da has been identified and designated connexin47 (Cx47). It mapped as a single-copy gene to mouse chromosome 11. In human HeLa cells and Xenopus oocytes, expression of mouse Cx47 or a fusion protein of Cx47 and enhanced green fluorescent protein induced intercellular channels that displayed strong sensitivity to transjunctional vo...

متن کامل

The role of neuronal connexins 36 and 45 in shaping spontaneous firing patterns in the developing retina.

Gap junction coupling synchronizes activity among neurons in adult neural circuits, but its role in coordinating activity during development is less known. The developing retina exhibits retinal waves--spontaneous depolarizations that propagate among retinal interneurons and drive retinal ganglion cells (RGCs) to fire correlated bursts of action potentials. During development, two connexin isof...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of cell science

دوره 123 Pt 20  شماره 

صفحات  -

تاریخ انتشار 2010